• Multiwfn 3.7正式版隆重發布!

    Multiwfn 3.7正式版隆重發布!

    文/Sobereva @北京科音  2020-Aug-14


    1 前言

    Multiwfn是極為流行、功能最全面的的量子化學波函數分析程序,被學術文章引用得越來越多(目前已被近70個國家的研究者共引用5600多次),用戶數越來越龐大。Multiwfn的上個正式版3.6是2019年5月21日發布的,經過近一年有余的不懈發展、改進和完善,Multiwfn 3.7正式版終于正式發布!目前已經可以在官網上http://www.shanxitv.org/multiwfn下載。如果下載速度太慢,大陸地區用戶可以通過百度網盤下載:http://pan.baidu.com/s/1dFgeghF,大陸地區以外用戶可以通過MEGA網盤下載:https://mega.nz/#F!HVcjECZS!rGG6dCO57AwpdCgYaQ3apg

    近一年來Multiwfn更新極度頻繁,帶(dev)后綴的開發版在Multiwfn官網上甚至有時候一天就更新兩、三次。各種最新改進始終體現在官網上的update history頁面里,到今日3.7正式版發布為止,相對于3.6版的各種新功能和改進合計已經有近140條,可以說再次有了飛躍性的進步。強烈建議所有Multiwfn用戶立刻更新到3.7版!不僅功能更多,而且很多功能變得更易用、效率更高,還修正了不少bug。

    隨著Multiwfn程序的進步,手冊也在不斷地擴充、完善,為此花費了極大的精力。3.6版手冊是717頁,而3.7正式版的手冊已達900頁!雖然手冊很龐大,但新用戶可以從可執行文件包里的Multiwfn quick start.pdf文檔中快速找到學習自己要做的分析應當查看的手冊的章節號。

    3.7版的可執行文件包里加入了How to cite Multiwfn.pdf文檔,特意詳細說明了使用Multiwfn發表文章時應當引用的文章。Multiwfn程序永遠免費,恰當引用Multiwfn及其作者的相關工作是對Multiwfn程序發展最大的支持。另外,專門介紹使用Multiwfn做劉述斌教授提出的各種信息論相關的量的文檔已發布,見《使用Multiwfn計算各種與信息論相關的量(information-theoretic quantities)》(http://www.shanxitv.org/537)。

    順帶一提,Multiwfn的入門非常容易,不熟悉Multiwfn者建議參看《Multiwfn FAQ》(http://www.shanxitv.org/452)和《Multiwfn入門tips》(http://www.shanxitv.org/167)。預計今年11月左右,將會在北京舉辦“第六屆量子化學波函數分析與Multiwfn程序培訓班”,具體通知會在培訓前一個月發布在北京科音官網(http://www.keinsci.com)和Multiwfn程序主頁上,歡迎關注!通過這個5天的培訓,參加者可以一次性徹底學懂各種波函數分析方法的思想、原理、應用以及在Multiwfn、NBO等程序中實現相應分析的操作,將會量子化學研究如虎添翼,明顯更容易做出更高檔次的研究成果。培訓內容見此鏈接:http://www.keinsci.com/workshop/WFN_content.html

    預計Multiwfn下個大版本(3.8)中主要將加入的一個功能是比較流行的自然布居分析(NPA),與此同時自然原子軌道(NAO)也將可以由Multiwfn直接產生。屆時,諸如AdNDP、Wiberg鍵級分解為原子軌道相互作用、NAOMO軌道成分分析、基于NAO的AV1245指數和多中心鍵級等各種依賴于NAO的功能將可以不依賴于NBO程序而獨立運行,這將給廣大用戶帶來極大的便利,尤其是對于使用Gaussian以外程序的量子化學研究者而言。

    如果在使用Multiwfn中遇到問題、發現bug,歡迎在計算化學公社論壇論壇下屬的Multiwfn分區(http://bbs.keinsci.com/wfn)或Multiwfn英文論壇(http://www.shanxitv.org/wfnbbs)中反饋。



    2 主要的新功能和改進

    2.1 新功能

    相對于3.6版新加入的功能如下:

    支持了NMR譜的繪制,直接支持Gaussian和ORCA的NMR任務的輸出文件,對于其它程序也可以自行寫為通用的輸入文件形式,見手冊3.13.5節的介紹和4.11.10節的例子。遠比GaussView繪制NMR靈活強大得多。

    支持了盧天提出的IGM under Hirshfeld partition of actual molecular density (IGMH,待發表)方法可視化和定量研究弱相互作用。此方法比起IGM圖像效果好得多,而且物理意義更嚴格,而且基于真實電子密度。見手冊3.23.6節的介紹以及4.20.11節的例子。

    支持了隧道掃描顯微鏡(STM)的繪制功能,見《使用Multiwfn模擬掃描隧道顯微鏡(STM)圖像》(http://www.shanxitv.org/549)。

    支持了單位球面表示法和矢量表示法展現(超)極化率,對于研究(超)極化率的各向異性極為有益,介紹和應用實例見《使用Multiwfn通過單位球面表示法圖形化考察(超)極化率張量》(http://www.shanxitv.org/547)。

    支持了軌道權重福井函數和雙描述符的計算,對于考察前線軌道(近)簡并體系的反應位點極有價值,見《通過軌道權重福井函數和軌道權重雙描述符預測親核和親電反應位點》
    http://www.shanxitv.org/533)。

    支持了J. Phys. Chem. A, 124, 339 (2020)提出的鍵級密度(BOD)和自然適應性軌道(NAdO)分析,可以將離域化指數對應的共價作用區域圖形化展現出來,以及以軌道方式進行展現,對于研究化學鍵很有幫助。詳見《使用鍵級密度(BOD)和自然適應性軌道(NAdO)圖形化研究化學鍵》(http://www.shanxitv.org/535)。

    支持了盧天提出的基于力場的范德華勢分析方法,對于考察分子間相互作用極為有益。見《談談范德華勢以及在Multiwfn中的計算、分析和繪制》(http://www.shanxitv.org/551)。

    支持了盧天提出的interaction region indicator(IRI,待發表)。此函數可以將化學鍵作用區域和弱相互作用區域同時展現出來,比具有同類功能的DORI函數明顯圖像效果更好,而且定義還簡單得多。見手冊3.23.8節的介紹和4.20.4節的例子。

    支持了J. Phys. Chem. A, 124, 2090 (2020)中新提出的比常用的Parr親電指數更嚴格的親電指數ωcubic。介紹和計算方法見已更新的《使用Multiwfn超級方便地計算出概念密度泛函理論中定義的各種量》(http://www.shanxitv.org/484)。

    支持了盧天提出的軌道離域指數(ODI,待發表)定量衡量軌道離域程度,見《通過軌道離域指數(ODI)衡量軌道的空間離域程度》(http://www.shanxitv.org/525)。

    在空穴-電子分析功能中加入了盧天提出的兩個新指數“空穴離域指數”和“電子離域指數”,這對于定量衡量空穴和電子的空間分布廣度很有益。見更新過的《使用Multiwfn做空穴-電子分析全面考察電子激發特征》(http://www.shanxitv.org/434)。

    支持了可視化周期性體系中的孔洞的功能,還能計算自由體積,見《使用Multiwfn圖形化展示分子動力學模擬體系中的孔洞、自由區域》(http://www.shanxitv.org/539)。

    支持了將原子徑向電子密度非常精確、容易地擬合為一批Slater函數或一批Gauss函數的線性組合。看手冊3.300.2節的介紹和4.300.2節的例子。

    可以解析地計算體系的電偶極矩、四極矩、八極矩,輸出信息非常豐富。見手冊3.300.5節的介紹和4.300.5節的例子。

    支持了計算特定片段的偶/多極矩,應用例子見《使用Multiwfn計算分子片段的偶極矩和復合物中單體的偶極矩》(http://www.shanxitv.org/558)。

    盆分析模塊(主功能17)支持了軌道成份計算的功能。例如可以計算AIM盆、ELF盆等各種類型的盆對軌道的貢獻,見手冊4.8.6節的例子。

    支持了盧天提出的分子極性指數(MPI,待發表)衡量分子的極性,極性和非極性表面積也可以一同給出。見《談談如何衡量分子的極性》(http://www.shanxitv.org/518)。此方法已被應用于討論18碳環的極性,見《一篇最全面、系統的研究新穎獨特的18碳環的理論文章》(http://www.shanxitv.org/524)。

    支持了盧天提出的IBSIW (intrinsic bond strength index for weak interactions,待發表) 指數定量衡量弱相互作用強度,可基于IGM和IGMH分析計算,見手冊3.23.5節的介紹。也支持了J. Phys. Chem. A, 124, 1850 (2020)中提出的intrinsic bond strength index (IBSI)定量衡量化學鍵強度。

    支持了ChemPhysChem, 14, 3714 (2013)中提出的high ELF localization domain population and volume (HELP and HELV)方法表征孤對電子特征,見手冊4.17.8節的例子。

    支持了非常適合用于分子動力學模擬的RESP2原子電荷的計算。見《RESP2原子電荷的思想以及在Multiwfn中的計算》(http://www.shanxitv.org/531)。

    支持了Phys. Chem. Chem. Phys., 18, 11839 (2016)中提出的AV1245指數,以及J. Phys. Chem. C, 121, 27118 (2017)中提出的AVmin指數衡量大環的芳香性,見《使用Multiwfn計算AV1245指數研究大環的芳香性》(http://www.shanxitv.org/519)和《衡量芳香性的方法以及在Multiwfn中的計算》(http://www.shanxitv.org/176)。

    支持了將Gaussian等程序做TDDFT電子激發計算中涉及的主要軌道躍遷和貢獻百分比以非常簡潔、緊湊的格式輸出,便于考察電子激發特征、將數據放到文章補充材料中。見《使用Multiwfn便利地查看所有激發態中的主要軌道躍遷貢獻》(http://www.shanxitv.org/529)。

    支持了PEOE(也稱Gasteiger)原子電荷計算功能,可以瞬間對大體系完成計算,見手冊3.9.17節的介紹和4.7.9節的例子。

    AdNDP模塊中加入了選項15,用于以NAO方式計算搜索出的AdNDP軌道的成份。

    繪制光譜的功能(主功能11)中,極小點和極大點的具體位置、數值都可以自動在圖上進行標注,見更新過的《使用Multiwfn繪制紅外、拉曼、UV-Vis、ECD、VCD和ROA光譜圖》(http://www.shanxitv.org/224)。

    支持了繪制MO-PDOS態密度曲線的功能,此曲線可以描繪不同分子軌道對DOS曲線的貢獻。見《使用Multiwfn繪制態密度(DOS)圖考察電子結構》(http://www.shanxitv.org/482)第6節的應用介紹和手冊4.10.5節的例子。此方法也被應用于盧天等人的18碳環的研究文章中:Carbon, 165, 461 (2020)。

    新加入了用戶自定義函數-3,對應于基于3D cubic spline方法對格點數據進行插值產生的函數,比用戶自定義函數-1對應的三線性插值明顯更為光滑。

    主功能100的主功能2支持了導出.mkl文件功能,結合ORCA自帶的orca_2mkl工具,使得其它量子化學程序產生的波函數都可以給ORCA程序當初猜用,對于解決ORCA中出現SCF不收斂很有價值,詳見《將Gaussian等程序收斂的波函數作為ORCA的初猜波函數的方法》(http://www.shanxitv.org/517)。

    主功能0的菜單欄的Tools分類中加入了非常方便的批量繪制軌道的功能,見視頻演示:《使用Multiwfn方便快速地批量繪制軌道圖形》(https://www.bilibili.com/video/av69765564/)。

    支持了解析Gaussian的polar=gamma關鍵詞輸出的第二超極化率的功能,將其輸出信息整理為非常易讀的格式,而且還順帶輸出一些重要的相關的量。見更新過的手冊 3.200.7節和《使用Multiwfn分析Gaussian的極化率、超極化率的輸出》(http://www.shanxitv.org/231)。

    主功能11繪制光譜時可以在光譜下方通過不同顏色的豎線標示不同類型躍遷的位置,以及通過豎線高度體現簡并度,這使得光譜圖的信息明顯更為豐富。見此文第8節的示例:《使用Multiwfn繪制紅外、拉曼、UV-Vis、ECD、VCD和ROA光譜圖》(http://www.shanxitv.org/224)。

    支持了第一超極化率的雙能級分析和盧天提出的三能級分析,對于解釋影響第一超極化率的本質因素很重要,見《使用Multiwfn對第一超極化率做雙能級和三能級模型分析》(http://www.shanxitv.org/512)。

    支持了J. Phys. Chem. A, 118, 1150 (2014)中提出的基于電子密度等值面計算小分子的動力學直徑的功能,見《使用Multiwfn計算分子的動力學直徑》(http://www.shanxitv.org/503)。

    支持了對指定的鏈計算鍵長交替(BLA)、鍵級交替(BOA)、鍵角交替和二面角交替情況,這對于研究寡聚物、大環的共軛路徑特征很有益。見《使用Multiwfn計算Bond length/order alternation (BLA/BOA)和考察鍵長、鍵級、鍵角、二面角隨鍵序號的變化》(http://www.shanxitv.org/501)。

    支持了將密度差分解為各種類型軌道貢獻,例如可以將福井函數分解為NBO軌道的貢獻。這對于了解密度差的本質、揭示其化學意義很有益。見《使用Multiwfn考察分子軌道、NBO等軌道對密度差、福井函數的貢獻》(http://www.shanxitv.org/502)。

    支持了計算超瑞利散射(HRS)相關的數據,對于經常研究非線性光學的人很有價值。見《使用Multiwfn計算與超瑞利散射(HRS)實驗相關的量》(http://www.shanxitv.org/499)。

    支持了計算兩套不同波函數中的軌道的模之間的重疊積分,見手冊3.200.6節的介紹和例子。這可以方便地衡量比如二聚體中的兩個分子間各個軌道間的重疊程度。

    支持了基于數值格點方式計算庫侖和交換積分的功能。見手冊3.200.17節。

    主功能100的主功能2支持了將格點數據導出為ParaView的.vti文件、將分子結構導出為.cml文件的功能,從而可以令格點數據連同分子結構通過強大的體數據觀看程序ParaView進行作圖。ParaView在可視化體數據方面的強大之處可參考《考察分子磁感生電流的程序GIMIC 2.0的使用(含24分鐘演示視頻)》(http://www.shanxitv.org/491)。.vti也被Multiwfn支持作為輸入文件來讀入格點數據信息。

    RESP電荷擬合過程中允許加入額外的擬合中心,可以比如擬合在力場中用于增強描述sigma穴、孤對電子區域的非原子中心的電荷。在更新過的《RESP擬合靜電勢電荷的原理以及在Multiwfn中的計算》(http://www.shanxitv.org/441)一文的3.6節中已做了示例。

    RESP電荷擬合功能支持了根據用戶指定的體系局部區域(或整個體系)自動判斷和設置原子等價性,見更新過的《RESP擬合靜電勢電荷的原理以及在Multiwfn中的計算》(http://www.shanxitv.org/441)一文的3.5節的示例。

    盆分析功能的圖形界面里支持了只觀看盆的電子密度大于0.001 a.u.部分的功能,使得盆的主體特征明顯更易于考察。見已更新的《使用Multiwfn做電子密度、ELF、靜電勢、密度差等函數的盆分析》(http://www.shanxitv.org/179)。

    定量分子表面分析功能(主功能12)中加入了選項14,用于計算特定表面極值點附近的特定函數值范圍內的面積,這可以用于衡量諸如sigma穴、pi穴的面積,見手冊3.15.2.2節的介紹和4.12.10節的實例。還加入了選項15,用于對分子表面根據被映射的函數進行類似盆分析的劃分,每個局部表面對應一個極值點,這有助于認識分子表面的構成,見手冊4.12.11節的實例。

    支持了載入和導出盧天提出的.mwfn格式文件。詳見《最理想的用于波函數分析的波函數文件格式mwfn已發表!》(http://bbs.keinsci.com/thread-16363-1-1.html)。

    主功能11繪制UV-Vis和ECD光譜的功能支持了Gaussian的EOM-CCSD任務的輸出文件。

    繪制光譜的主功能11中,以及繪制態密度(DOS)圖的主功能10中,現在都可以輸入s將當前的繪圖設置保存為文本文件,以后重新繪圖時可以輸入l從文本文件中讀入作圖設定,免得每次都得麻煩地重新修改一遍作圖設置。

    settings.ini中加入了iloadGaugeom選項,設為1后就可以從Gaussian輸出文件中載入最后的結構。這個設計使得Multiwfn可以實現此文介紹的功能:《一鍵把所有gjf文件轉成xyz文件、把所有Gaussian輸出文件轉成gjf文件的腳本》(http://www.shanxitv.org/530)。

    DOS繪制功能中加入了選項9,可以將軌道的簡并度通過離散豎線高度直觀地體現出來。

    主功能100的主功能2加入了非常方便的產生PSI4的SAPT任務的輸入文件的功能,見《使用PSI4做對稱匹配微擾理論(SAPT)能量分解計算》(http://www.shanxitv.org/526)。

    Multiwfn計算出的鍵級已可以非常方便地直接通過GaussView標注在圖上,見《將Multiwfn計算的鍵級直接標注在分子結構圖上的方法》(http://www.shanxitv.org/523)。

    完全態求和(SOS)功能中加入了選項19,可以對beta(-(w1+w2);w1,w2)中的w1和w2進行掃描,從而繪制二維圖直觀展現體系可能具有的非線性光學特征,見《Multiwfn的SOS功能現已可以對動態超極化率beta(w1,w2)的頻率做二維掃描》(http://bbs.keinsci.com/thread-15455-1-1.html)。

    支持了非平面體系的pi電子軌道自動檢測功能,這使得繪制任意體系的pi共軛路徑非常方便。見《在Multiwfn中單獨考察pi電子結構特征》(http://www.shanxitv.org/432),以及盧天等人介紹此算法的論文Theoretical Chemistry Accounts, 139, 25 (2020)。


    2.2 新改進和改變

    相對于3.6版,意義比較大的或被較多人關注的新改進和改變將在下面羅列一下。完整的改進列表見下一節的IMPROVEMENTS AND CHANGES部分。

    Multiwfn自身的靜電勢計算代碼速度得到質的提升,見《Multiwfn的計算靜電勢的內部代碼速度得到了巨幅提升!》(http://www.shanxitv.org/563)。此部分的改進是基于張鋆提供的利用了他的libreta積分庫的代碼,在此表示感謝。

    為了方便用戶,使用命令行方式運行Multiwfn時現已可以添加一些選項。可以使用-nt、-uf分別指定并行核數、用戶自定義函數(user-defined function)的編號。可以加用-silent要求使用silent方式運行。可以用-set直接指定settings.ini文件位置。例如可運行Multiwfn phenol.wfn -nt 12 -silent -set /sob/settings.ini。

    平均局部離子化能著色的分子表面圖已可以方便地繪制來考察親電反應位點,見《使用Multiwfn和VMD繪制平均局部離子化能(ALIE)著色的分子表面圖(含視頻演示)》(http://www.shanxitv.org/514)。

    計算概念密度泛函理論定義的各種量的功能(主功能100的子功能16)加入了選項-1,選過一次之后,再選選項1,就可以產生ORCA的輸入文件,自行運行之后就可以得到做分析所需的N.wfn、N-1.wfn等波函數文件。這使得沒有Gaussian的人也能方便地用這個功能做概念密度泛函理論分析。此功能介紹見《使用Multiwfn超級方便地計算出概念密度泛函理論中定義的各種量》(http://www.shanxitv.org/484)。

    Hirshfeld-I電荷計算變得遠比以往容易得多得多。由于Multiwfn現在已經自帶了全周期表(稀土元素除外)的各種元素的不同電荷數的原子徑向密度文件,因此目前計算過程已可以完全脫離Gaussian程序。見手冊3.9.13節的說明和4.7.4節的例子。

    軌道定域化功能現在可以通過選項3來要求只對部分軌道允許其相互混合來進行定域化。

    載入較大.fch、.molden文件的耗時大幅降低。

    主功能11繪制多個體系光譜的時候不再需要將躍遷數最多的體系放在輸入的multiple.txt文件中的第一個,明顯更為方便。

    支持了ORCA和Dalton程序產生的含有h角動量基函數的.molden文件。

    主功能18中的各種基于組態系數做電子激發分析的功能都已支持ORCA的sTDA和sTDDFT任務的輸出文件,使得巨大體系電子激發分析成為可能,詳見http://bbs.keinsci.com/thread-17358-1-1.html

    繪制平面圖(主功能4)的后處理菜單中加入了選項-3,可以將當前作圖設定導出到文本文件中,也可以從文本文件載入作圖設定,免得每次作類似的圖或者重作某張圖時都需要重新敲一遍命令。

    拓撲分析功能(主功能2)目前已支持對Multiwfn支持的所有實空間函數做拓撲分析。

    IGM分析中計算delta-g指數的算法做了顯著改進,計算耗時遠低于上個版本,與此同時精度還得到了改進。

    為了方便用戶,導出軌道格點數據的功能(主功能200的主功能3)里可以通過輸入諸如h選擇HOMO、h-3選擇HOMO-3、l+2選擇LUMO+2。

    觀看體系結構和軌道的主功能0里的一些改進:加入了幾何結構測量功能、高亮部分原子功能、基于特定原子編號獲得其所在整個片段中原子序號的功能、切換是否顯示氫原子的選項。另外,選擇了某軌道后,保存圖片文件時文件名將對應于軌道編號以便于管理和避免混淆。Tools下拉菜單里加入了Write settings to GUIsettings.ini和Load settings from GUIsettings.ini選項,分別用于將當前作圖設置導出到GUIsettings.ini文件、從GUIsettings.ini文件中讀入作圖設置。

    將以NAO為基的Wiberg鍵級分解為原子軌道間相互作用的功能已支持開殼層體系。

    在定量分子表面分析功能(主功能12)中加入了選項18,用于刪除不想要的表面極值點。還加入了選項19,可以將特定一批表面極值點合并為它們的平均位置,由此可以消除某些離得很近的影響視覺效果的多余的表面極值點。

    主功能18中的電子激發分析模塊(空穴-電子分析等)現已支持Gaussian和ORCA的激發態優化的輸出文件作為輸入文件,因此做這些分析前不必先把優化的最后一幀提取出來再單獨做一次電子激發計算。

    填色平面圖、著色的地形圖、熱圖等繪制功能中,都增加了Set color transition選項來設置色彩過渡方式,使得控制圖像效果的靈活度比以前高得多,見手冊4.4.1.2節的示例,以及此文中的例子的繪圖過程:《談談18碳環的幾何結構和電子結構》(http://www.shanxitv.org/515)。

    在《利用Multiwfn計算傾斜、扭曲環的NICS_ZZ》(http://www.shanxitv.org/261)一文介紹的功能中,目前已經可以通過指定的一批原子擬合出的平面來定義平面(之前版本只能用三個原子定義平面,這樣做有時不夠合理)。

    GROMACS的.gro文件已支持作為輸入文件來提供結構信息。

    繪制填色效果的RDG散點圖變得更容易,見更新過的《繪制有填色效果的用于弱相互作用分析的RDG散點圖的方法》(http://www.shanxitv.org/399)。還支持了IGM填色散點圖的繪制,見手冊4.20.10.1節末尾。

    已支持直接載入ORCA的gbw文件,前提是將settings.ini里的orca_2mklpath設為了ORCA目錄下的orca_2mkl程序的實際路徑。

    EEM電荷計算已支持用.mol2作為輸入文件,避免了之前需要用的.mol文件對原子數有999的嚴重限制。

    大大擴展和完善了產生ORCA輸入文件的功能。詳見《詳談Multiwfn產生ORCA量子化學程序的輸入文件的功能》(http://www.shanxitv.org/490)。

    之前《使用Multiwfn+VMD快速地繪制靜電勢著色的分子范德華表面圖和分子間穿透圖(含視頻演示)》(http://www.shanxitv.org/443)文中介紹了怎么在Windows下繪制,現在也提供了在Linux下繪制這種圖的腳本,做法見手冊4.A.13節的Part 9。

    定量分子表面分析功能的后處理菜單加入了選項8,可以把表面頂點和極值點導出為pqr文件,既包含坐標也包含被映射的函數的數值,而且此格式可以直接被VMD載入。此改進便于用戶做后處理分析。

    需要讀取NBO輸出信息的功能中(如AdNDP模塊等)已支持了NBO7的輸出信息,并且改進了對其它NBO版本在特殊情況下的兼容性。

    RESP電荷擬合時所做的電荷約束和原子等價性約束對于兩步式擬合的第一步現在也生效了。

    Hirshfeld surface分析中,支持了計算中心分子的特定原子與周圍分子的特定原子之間的接觸面積,見手冊4.12.6節的例子。

    支持了.dx格式作為輸入文件載入格點數據。此文件可以通過諸如VMD的Volmap插件產生。利用這個特征,Multiwfn可以作為非主流的.dx向主流的.cub格式的轉換器(主功能13可將已載入的格點數據導出為.cub)。

    HOMA芳香性指數計算功能里加入了B-N和B-C的參數,從而令此方法能用于很多含硼的體系。

    主功能100的基于幾何結構的分析功能(子功能21)中,如果輸入dist命令并且輸入兩個片段中的原子序號,就可以給出這兩個片段之間最近和最遠距離,以及它們之間的幾何中心和質心距離。

    拓撲分析(主功能2)的功能1現已可以將txt/pdb/pqr文件中記錄的坐標作為初猜點。這使得拓撲分析模塊可以對盆分析模塊毫無遺漏地確定的各種函數的極值點位置進行精煉,見手冊4.2.7節的盆分析+拓撲分析獲得自旋密度極值點位置的例子。


    3 完整的更新列表

    方框里的日期是相應功能加入Multiwfn開發版(dev)的時間。

    NEW FUNCTIONS

    ?Functionality of quantitative molecular surface analysis module (main function 12) has been extended. A new option "14 Calculate area of the region around a specific surface extreme" is added to post-process menu, this is very useful for measuring local surface area (i.e. size) of sigma-hole or pi-hole. See corresponding introduction in Section 3.15.2.2 of manual and practical analysis example in Section 4.12.10. In addition, a new option "15 Basin-like partition of surface and calculate areas" is added, it is useful for unveiling how the whole molecular surface is composed of individual surface basins corresponding to various surface ESP extrema, see study example in Section 4.12.11.
    ?Exporting loaded or calculated grid data to .vti file is supported by subfunction 2 of main function 100. .vti can be visualized by the very powerful volumetric data visualizer ParaView (freely available at https://www.paraview.org). This function now also supports exporting current structure to .cml file, which can be loaded by ParaView to show molecules.
    ?Subfunction 17 is added to main function 200, it is used to calculate Coulomb and exchange integral between two orbitals based on uniform grid, see Section 3.200.17 of manual for detail and example. In the future version, evaluating these integrals via analytical method may be also available (in that case the cost will be significantly lower).
    ?Subfunction 6 of main function 200 now is also able to calculate overlap integral between norm of orbitals of two sets of wavefunctions, this quantity is useful for measuring orbital superposition. See Section 3.200.6 of manual for detail.
    ?Many data related to Hyper-Rayleigh scattering (HRS) now can be computed via subfunction 7 of main function 200. See Section 3.200.7 of manual for introduction and 4.200.7 for example.
    ?[2019-Aug-9] Density difference now can be decomposed to orbital contributions. For example, one can use this function to study which NBO orbital(s) have evident contribution to Fukui function. See Section 3.200.13 of manual for introduction and Section 4.200.13 for example.
    ?[2019-Aug-11] Bond length alternation (BLA), bond order laternation (BOA), bond angle and dihedral alterations for a given chain now can be very easily calculated via subfunction 18 of main function 200. This function is particularly useful for studying conjugated oligomers or conjugated paths. See Section 3.200.18 of manual for introduction and 4.200.18 for example.
    ?[2019-Aug-20] The procedure of calculating kinetic diameter for small molecules using the method proposed in J. Phys. Chem. A, 118, 1150 (2014) has been illustrated in Section 4.12.12 of manual.
    ?[2019-Sep-7] Two-level and three-level analyses of first hyperpolarizability have been supported in sum-over-states (SOS) module of Multiwfn. See Section 3.200.8.2 for detail and Section 4.200.8.2 for example.
    ?[2019-Sep-11] Multiwfn now is able to parse second polarizability from "polar" task of Gaussian and print it in readible format and give relevant information. See updated Section 3.200.7 for introduction and Section 4.200.7 for example.
    ?[2019-Sep-27] When plotting spectra via main function 11, user can use new option 23 to add spikes at bottom of the spectrum to clearly indicate position of transition energies, different colors can be used to highlight different types of transitions, the height can be used to reflect degree of degenerate. See example in Section 4.11.9 for illustration.
    ?[2019-Sep-27] An option "Tools - Batch plotting orbitals" is added to menu bar of main function 0. This option can very conveniently save isosurface graphs for a batch of given orbitals.
    ?[2019-Sep-27] A special form of PDOS, namely "MO-PDOS" now can be plotted by main function 10. MO-PDOS map can clearly reveal contribution to DOS from different sets of MOs. See Section 4.10.5 for introduction and example.
    ?[2019-Oct-11] Subfunction 2 of main function 100 now can export .mkl file (old Molekel input file). This is particularly useful for ORCA users if they want to use wavefunction generated by other quantum chemistry codes as initial guess of ORCA, namely using other codes to generate .fch or .molden file first, then use Multiwfn to convert it to .mkl, and finally use orca_2mkl test -gbw to convert test.mkl to test.gbw.
    ?[2019-Oct-13] The real space function generated by 3D cubic spline interpolation based on the grid data in memory is supported as user-defined function with index of -3. This function is more smoother and usually more accurate than the function evaluated by trilinear interpolation (user-defined function -1) when grid spacing is relatively large.
    ?[2019-Oct-14] In the spectrum plotting function (main function 11), minima and maxima of spectrum can be directly labelled on the spectrum, see updated Section 4.11.3 on how to do this. Exact values of spectrum extrema are now directly printed on screen when choosing option 0 to plot map; the use of option 16 has been completely changed, now it is used to set how to show extreme labels.
    ?[2019-Oct-15] A new molecular descriptor "Molecular polarity index" (MPI) as well as polar and nonpolar surface areas are automatically outputted after performing quantitative molecular surface analysis for electrostatic potential via main function 12. See Section 3.15.1 for introduction of its definition. The larger the MPI, the higher the molecular polarity.
    ?[2019-Oct-19] The RESP fitting module now supports generate equivalent constraint file based on point group symmetry of local regions or the entire system, see "Example 5" of Section 4.7.7 for illustration. This feature is particularly useful and convenient if you want to make resulting charges satisfy molecular global or local symmetry.
    ?[2019-Oct-27] The AV1245 proposed in Phys. Chem. Chem. Phys., 18, 11839 (2016) has been supported as subfunction 11 of main function 9. This index is very useful in quantifying aromaticity of large ring (such as porphyrin). See Section 3.11.10 for introduction and 4.9.11 for example.
    ?[2019-Nov-16] In the AdNDP module, option 15 is added, which is used to compute orbital composition based on natural atomic orbitals (NAOs) for picked AdNDP orbitals.
    ?[2019-Nov-19] PEOE is a popular and very fast method of evaluating atomic charges, it has been supported as subfunction 19 of main function 7. This kind of charge is also known as Gasteiger charge. See Section 3.9.17 for introduction and Section 4.7.9 for example.
    ?[2019-Dec-21] Orbital delocalization index (ODI) is supported to quantify extent of spatial delocalization of orbitals on the whole system or on specific fragment. See Section 4.8.5 for example.
    ?[2020-Jan-5] Hole delocalization index (HDI) and electron delocalization index (EDI) have been supported in hole-electron analysis module, they are pretty useful in quantifying breadth of spatial distribution of hole and electron. See "Theory 3" of Section 3.21.1.1 for introduction and updated Section 4.18.1 for example.
    ?[2020-Jan-24] Adding additional fitting center is supported by RESP charge calculation module. See Example 6 of Section 4.7.7 for illustrative application.
    ?[2019-Jan-27] GUI (option 0) of basin analysis module now supports drawing basins within in rho=0.001 surface (via "Set basin drawing method" - "rho>0.001 region only" option in the menu bar). See updated Section 4.17 of manual for illustration. In addition, this video tutorial is highly suggested to have a look: "Drawing AIM basins (atomic basins) in Multiwfn and VMD" (https://youtu.be/9D5do80XcbI)
    ?[2019-Jan-28] Subfunction 15 is added to main function 18. It is used to show major MO transitions for all excited states, so that you can quickly recognize basic characteristics of various excited states in terms of MOs
    ?[2019-Jan-30] The RESP2 charge proposed in DOI: 10.26434/chemrxiv.10072799.v1 now can be easily calculated, see Section 4.7.7.9 for example. RESP2 is very suitable for molecular dynamics purpose.
    ?[2020-Feb-9] Van der Waals potential and its two components (repulsion potential and dispersion potential) now can be visualized via subfunction 6 of main function 20. See Section 3.23.7 for introduction and Section 4.20.6 for example. This analysis method has been published in DOI: 10.26434/chemrxiv.12148572.v1
    ?[2020-Feb-13] Bond order density (BOD) and natural adaptive orbital (NAdO) analyses proposed in J. Phys. Chem. A, 124, 339 (2020) has been supported. This is a useful method that can visualize contribution to delocalization index from various spatial regions. See Section 3.200.20 for introduction and 4.200.20 for example.
    ?[2020-Feb-23] Orbital-weighted Fukui function and orbital-weighted dual descriptor not can be easily calculated, see Section 3.100.16.3 of manual for introduction and 4.100.16.2 for illustrative application. Compared to standard form of Fukui function and dual descriptor, they are able to reasonably applied to systems with (quasi-)degenerate frontier molecular orbitals, such as C60, coronene and cyclo[18]carbon.
    ?[2020-Mar-5] Pores or free regions in a box (usually simulated by molecular dynamics) can be visualized by subfunction 1 of main function 300, volume of free regions can also be calculated. See Section 3.300.1 for introduction and 4.300.1 for example.
    ?[2020-Mar-10] Sphericalized atomic radial density now can be easily fitted as multiple Slater type orbitals (STOs) or Gaussian type functions (GTFs) by subfunction 2 of main function 300. This module is quite robust and flexible. See Section 3.300.2 for introduction and Section 4.300.2 for practical examples.
    ?[2020-Mar-13] The ωcubic electrophilicity index introduced in J. Phys. Chem. A, 124, 2090 (2020) now can be automatically calculated by subfunction 16 of main function 100, see Section 3.100.16 for detail. It is shown that condensed form of this index at halogen atom in halogen bond dimers has ideal linear relationship with binding energy.
    ?[2020-Apr-3] The high ELF localization domain population and volume (HELP and HELV) defined in ChemPhysChem, 14, 3714 (2013) now can be calculated via basin analysis module. They can be used to study molecular properties that closely related to lone pair electrons. See the ChemPhysChem paper for detailed introduction and Section 4.17.8 of manual for illustration.
    ?[2020-Apr-10] The unit sphere representation and vector representation of (hyper)polarizability proposed in J. Comput. Chem., 32, 1128 (2011) has been supported as subfunction 3 of main function 300. They are quite useful methods of visualizing (hyper)polarizability tensor, see Section 3.300.3 of manual for introduction and 4.300.3 for example.
    ?[2020-Apr-19] The intrinsic bond strength index (IBSI) proposed in J. Phys. Chem. A, 124, 1850 (2020) has been supported. It was defined in the framework of IGM and demonstrated to be useful in characterizing strength for chemical bonds. See Section 3.11.9 for introduction and Section 4.9.6 for example.
    ?[2020-Apr-19] The IGM under Hirshfeld partition of actual molecular density (IGMH) proposed by Tian Lu has been supported as subfunction 11 of main function 20. This new form of IGM purely relies on wavefunction to perform IGM analysis, the result is more physically meaningful and graphical effect is better, though the cost is higher than the original form of IGM, which employs promolecular approximation. See Section 3.23.6 for introduction of IGMH and Section 4.20.11 for example.
    ?[2020-Apr-26] Scanning tunneling microscope (STM) image now can be well simulated by subfunction 3 of main function 300 of Multiwfn. Both constant height and constant current modes are supported, very nice image can be directly generated. See Section 3.300.4 of manual for introduction and 4.300.4 for example.
    ?[2020-Apr-26] IBSIW (intrinsic bond strength index for weak interactions) now can be calculated by option 6 of IGM and IGMH analysis modules. See Section 3.23.5 for introduction.
    ?[2020-Jun-3] Orbital composition now can be computed based on AIM partition by newly added subfunction 11 of main function 17. This function can also computes composition contributed by various kinds of basins, such as ELF basin and Fukui function basin. See Section 4.8.6 for example.
    ?[2020-Jun-18] Molecular quadrupole and octopole moments now can be calculated via subfunction 2 of fuzzy atomic space analysis module. In addition, by defining fragment using option -5 in this module and then choose subfunction 2, you can calculate fragment dipole/quadrupole/octopole moments, see Section 4.15.3 for example of calculating fragment dipole moment.
    ?[2020-Jun-27] Electric dipole, quadrupole and octopole moments of present system now can be evaluated analytically by subfunction 5 of main function 300, see Section 3.300.5 of manual for introduction and 4.300.5 for example.
    ?[2020-Jul-3] The interaction region indicator (IRI) proposed by Tian Lu has been supported as subfunction 4 of main function 20. IRI is a function that able to equally well reveal chemical bond regions and weak interaction regions. See Sections 3.23.8 and 4.20.4 of manual for introduction and example, respectively. IRI is defined in a much simpler way than DORI, while graphical effect is found to be evidently better than DORI.
    ?[2020-Jul-26] Plotting NMR has been supported in main function 11. Output file of NMR task of Gaussian and ORCA are supported. See Section 3.13.5 of manual for detail and 4.11.10 for example.


    IMPROVEMENTS AND CHANGES

     ?In the menu bar of main function 0, "Measure geometry" is added, by which you can easily measure distance, angle and dihedral between selected atoms.
    ?Option -2 of AdNDP module has been modified. Now it consists of a few suboptions, via "Set maximum number of candidate orbitals to be printed", one can customize the maximum number of candidate orbitals printed on screen during AdNDP searching.
    ?The way of plotting electrostatic potential colored vdW surface via script under Linux platform has been described in part 9 of Section 4.A.13.
    ?The interface for generating ORCA input file (option 12 of subfunction 2 of main function 100) now supports adding diffuse functions and generating input file of sTD-DFT task.
    ?.vti file (ParaView VTK Image Data) containing scalar data now can be loaded to provide grid data. This makes Multiwfn able to deal with the magnetically induced ring current data calculated by GIMIC 2.0 code.
    ?.mol2 file now can be used as input file for EEM charge calculation.
    ?After using option 6/7/16/17 of sum-over-states module of Multiwfn (subfunction 8 of main function 200), variation of all components of beta/gamma with respect to number of considered states / external frequency will be exported to a text file with _comp suffix in current folder.
    ?Subfunction 22 of main function 100 now is also able to detect pi-like delocalized orbitals for a not exactly planar system, see updated Section 3.100.22 for detail.
    ?Multiwfn now is able to directly load .gbw file of ORCA program, the user should set "orca_2mklpath" in settings.ini to actual path of the orca_2mkl executable file in ORCA folder.
    ?A new option "8 Export all surface vertices and surface extrema as vtx.pqr and extrema.pqr" is added to post-process menu of quantitative molecular surface analysis module. In the exported .pqr files, value of mapped function is recorded as the third last column in high precision and a.u.
    ?[2019-Aug-8] GROMACS .gro format now can be used as input file to provide atomic information
    ?[2019-Aug-24] The RDGmap.gnu in "examples" folder has been replaced with examples\scripts\RDGscatter.gnu. As described in the updated Section 3.23.1, before plotting sign(λ2)ρ colored RDG scatter map, the output.txt file is no longer needed to be manually processed.
    ?[2019-Aug-30] In the function "Obtain NICSZZ value for non-planar or tilted system", the plane can be defined via fitting a given set of atoms (in old version you can only use three atoms to define the plane)
    ?[2019-Sep-2] When input file contains connectivity information, such as .mol2 and .cml, the bonding in GUI will not be automatically determined but displayed according to known connectivity.
    ?[2019-Sep-11] In main function 0, if an orbital has been selected, then the file name of saved picture will be the corresponding orbital index.
    ?[2019-Sep-13] Electron excitation analysis modules (e.g. hole-electron analysis) now supports output file of excited state optimization task of Gaussian and ORCA as input file.
    ?[2019-Sep-14] In the menu of plotting color-filled map, shaded relief map and colored matrix, now one can change color transition method via option "Set color transition", namely the default rainbow transition (Purple-Green-Red) is no longer the only choice. An illustration is given in Section 4.4.1.2 of the manual. At the meantime, the "inowhiteblack" parameter in settings.ini is removed, because the same effect can be equivalently realized by choosing other color transition method instead of the default one.
    ?[2019-Sep-19] "iprintLMOorder" parameter is added to settings.ini, if it is set to 1, then after completing the generation of LMOs, composition of LMOs will be printed in the order of atoms and atom pairs instead of in order of LMO indices.
    ?[2019-Sep-21] Output file of NBO7 now could be used for AdNDP, NAOMO, etc. analyses (Earlier versions only support NBO 3,5,6).
    ?[2019-Sep-22] In the post-process menu, a new option 18 is added, by which you can remove unwanted surface extrema by inputting their indices. Another new option is 19, you can use it to merge some surface extrema, the average coordinate of selected extrema will be employed as the new position.
    ?[2019-Sep-22] In the population analysis module, if fragment has been defined by option -1, then after population analysis or atomic charge evaluation, not only fragment charge will be given, but also fragment population will be shown.
    ?[2019-Sep-24] In the post-process menu of hole-electron analysis, an option -1 is added, if its status is manually switch to "Yes", then the outputted cube files (e.g. hole.cub) will have index of currently loaded excited state as suffix.
    ?[2019-Sep-28] "Toggle showing hydrogens" and "Set atom highlighting" options are added to "Other settings" menu of GUI of main function 0.
    ?[2019-Oct-12] "isoRGB_same" and "isoRGB_oppo" parameters are added into settings.ini, they are used to set default red, green and blue components of isosurface with same sign and oposite sign as current isovalue, respectively.
    ?[2019-Oct-19] Customized charge constraint and equivalent constraint now also take effect for the first stage of the standard two-stage RESP fitting procedure. This improvement make RESP charge fitting more flexible.
    ?[2019-Oct-22] A new parameter "iMCBOtype" is added to settings.ini. If it is set to 1, then the calculated multi-center bond order will correspond to the average between positive and reversed input order of atom indices. If it is set to 2, then all possible permutations of atom indices will be taken into account in the multi-center bond order calculation. See Section 3.11.2 for detail.
    ?[2019-Oct-29] The function "Decompose Wiberg bond order in NAO basis as atomic orbital pair contributions" introduced in Section 3.11.8 has supported open-shell wavefunction.
    ?[2019-Oct-30] When outputting calculated Hirshfeld/ADCH/Becke/VDD/CM5 charges, normalized charges are also printed to eliminate the marginal error due to unavoidable inaccuracy of numerical integration
    ?[2019-Nov-16] The orbital composition analysis function based on natural atomic orbitals (NAOs) now also prints contribution from NAO shells.
    ?[2019-Nov-21] The sum-over-states module (subfunction 8 of main function 200) now has a new option 19, which is used for scanning w1 and w2 of beta(-(w1+w2);w1,w2), the resulting file can be used to plot "beta vs. w1,w2" relief map to identify possible non-linear optical effects. See Section 4.200.8.1.
    ?[2019-Dec-2] In the Hirshfeld surface analysis, the area of contact surface between specific atoms in the central molecule and specific atoms in the peripheral molecules can be outputted. See updated Section 4.12.6 of Multiwfn manual for example.
    ?[2019-Dec-4] The bond orders calculated by Multiwfn now can be easily labelled on molecular structure map by using Multiwfn in combination with GaussView. See updated Section 4.9.1 of manual on how to realize this.
    ?[2019-Dec-23] A new option "Select fragment" is added to "Tools" submenu of the menu bar of main function 0. After selecting it and input an atom index, the whole fragment where the atom attributes to will be highlighted, and the indices of all atoms in the fragment will be returned. This is useful when you perform analysis based on fragment.
    ?[2019-Dec-24] The function of generating PSI4 input file (see subfunction 2 of main function 100) now can very easily generate input file of SAPT task. See http://www.shanxitv.org/526 for introduction.
    ?[2019-Dec-10] The functions for generating input file of PSI4 and MOPAC programs (corresponding options in subfunction 2 in main function 100) have been largely extended
    ?[2019-Jan-19] Option 9 is added to DOS plotting module, it can be used to show orbital degeneracy in terms of height of discrete lines. See updated examples in Section 4.10.
    ?[2019-Jan-23] DOS plotting module (main function 10) now support saving current status (plotting settings, fragment definition and orbital information) to a file and loading status from a file, so that you can quickly recover previously saved status. See end of Section 4.10.5 for example.
    ?[2019-Jan-23] Spectrum plotting module (main function 11) now support saving current plotting settings to a file and loading plotting settings from a file. See updated Section 4.11.3 for example.
    ?[2019-Jan-24] In MK and CHELPG calculation module, the unit of the coordinate in the file for providing additional fitting centers has been changed to Angstrom (the old version is Bohr)
    ?[2019-Jan-28 & 2020-Apr-10] "iloadGaugeom" is added to settings.ini. When Gaussian output file is used as input file, if it is set to 1 and 2, then Multiwfn will load final geometry (input orientation and standard orientation, respectively) from this file to obtain atom coordinate information.
    ?[2019-Jan-30] Spectrum plotting module (main function 11) has supported plotting UV-Vis and ECD spectra for EOM-CCSD task of Gaussian.
    ?[2020-Feb-8] .dx format has been supported as input file, it is a volumetric data format that can be exported by e.g. Volmap plugin of VMD program.
    ?[2020-Feb-11] A new option "6 Output orbital overlap matrix in atoms to AOM.txt in current folder" now is available in basin analysis module when electron density is selected as the function for partitioning the basins.
    ?[2020-Feb-13] .mwfn file is supported as input file and can be exported by some functions (e.g. subfunction 2 of main function 100). This is a new and much better format than others (e.g. wfn/fch/molden) for exchanging wavefunction information. See Section 2.5 of manual for detail. The paper specifically introducing the .mwfn format has been published: ChemRxiv (2020) DOI: 10.26434/chemrxiv.11872524.v1
    ?[2020-Feb-14] In main function 0, now one can select "Tools" - "Write settings to GUIsettings.ini" to save current visualization state to GUIsettings.ini. In the future, one can use "Tools" - "Load settings from GUIsettings.ini" to retrieve previous visualization state. See Section 3.2 of manual for detail.
    ?[2020-Feb-21] After generating AIM basins via main function 17, if option 4 is selected, not only localization index and delocalization index matrix will be outputted based on basin indices (like earlier version), but also they will be outputted based on atomic indices.
    ?[2020-Mar-1] B-N and B-C parameters have been added to HOMA calculation module. B-N parameter has been added to Bird calculation module
    ?[2020-Mar-20] In the function of exporting orbital wavefunctions (subfunction 3 of main function 200), now one can use such as "h" to choose HOMO, "h-3" to choose HOMO-3, "l+2" to choose "LUMO+2". This improvement makes exporting cube file for frontier orbitals easier.
    ?[2020-Mar-24] A new option "20 Set number of decimal places for axes" is added to post-process menu of DOS plotting module (main function 10).
    ?[2020-Apr-18] A new algorithm is employed for calculating atom pair delta-g index in the IGM analysis module. The cost is much lower than before, and at the same time the numerical accuracy is evidently improved.
    ?[2020-Apr-22] Color of critical points in plane map now can be set by "CP_RGB_2D" parameter in settings.ini.
    ?[2020-Apr-23] Topology analysis function now can be applied for any real space function that supported by Multiwfn.
    ?[2020-Apr-23] Option 1 in topology analysis module has been extended. Now a batch of starting points can be directly loaded from a .txt/.pdb/.pqr file, therefore this module now is able to be used to refine the positions of the attractors crudely located by basin analysis module based on evenly distributed grids.
    ?[2020-Apr-23] Option -4 of basin analysis module is extended, now it can also export located attractors as .pqr file and .txt file, in which the function value at the attractors are recorded.
    ?[2020-Apr-23&29] Option -3 has been added to post-processing menu of main function 4, in this option there are many suboptions used to adjust plotting settings. Option -4 is also added, it is used to save (load) all plotting settings to (from) an external file (.txt).
    ?[2020-May-9] All electron excitation analyses related to configurational coefficients, such as hole-electron analysis, now support sTDA or sTDDFT task of ORCA. See updated Section 3.21.A of manual for detail. Due to this improvement and extremely fast speed of sTDA/sTDDFT method, electron excitation analyses are feasible for systems consisting of even more than 500 atoms.
    ?[2020-May-21] Option 3 has been added to orbital localization analysis module (main function 19). This option can localize specific subset of molecular orbitals, making orbital localization more flexible.
    ?[2020-May-30] In old versions, topology paths do not exactly reach the final critical point. In the new version, the finally nearly reached critical point is regarded as the final point of the path, and thus the reported length of topology paths becomes more reasonable.
    ?[2020-May-31] AVmin index proposed in J. Phys. Chem. C, 121, 27118 (2017) has been supported for measuring aromaticity of large ring. See Section 3.11.10 of manual for detail.
    ?[2020-Jun-2] Calculation of Hirshfeld-I charge becomes significantly easier!!! In the new version, "atmrad" folder is provided in the "examples" directory in Multiwfn binary package, it contains atomic radial densities for all elements in the periodic table (except for lanthanides and actinides) at all possible charged states. If this folder is copied to current folder, then the step of calculating atomic .wfn files will be directly skipped during Hirshfeld-I calculation. See Section 3.9.13 of manual for details and Section 4.7.4 for example.
    ?[2020-Jun-6] The molden file generated by ORCA and Dalton containing h angular moment now has been perfectly supported.
    ?[2020-Jun-6] Default extension distance of ICSS analysis has been changed from 6 Bohr to 12 Bohr, which is more reasonable for this kind of analysis.
    ?[2020-Jun-7] In the RESP charge calculation module, maximum number of RESP iterations and charge convergence threshold now can be set by option 4 in this module.
    ?[2020-Jun-27] Subfunction 7 of main function 6 now is able to export electric quadrupole and octopole integral matrix between basis functions.
    ?[2020-Jun-27] In subfunction 21 of main function 100, now one can input "dist" command and then input atom indices for two fragments, then minimum and maximum distances between the fragments, as well as distances between their geometry centers or between their mass centers, will be outputted.
    ?[2020-Jul-5] In the sum-over-states (SOS) calculation module (subfunction 8 of main function 200), user now can specify incident lights in negative frequencies to compute e.g. beta(-(w1-w2);w1,-w2).
    ?[2020-Jul-11] Speed of calculating electrostatic potential (ESP) has been significantly improved!!! (faster than old version by more than 20 times) This new code of efficiently evaluating ESP was kindly provided by Jun Zhang and then adapted by Tian Lu.
    ?[2020-Jul-21] Time spent in loading large .fch/.molden file is notably reduced.
    ?[2020-Jul-24] When plotting spectra for multiple systems in main function 11, it is no longer need to place the system with maximal number of transitions as the first term in the multiple.txt.
    ?[2020-Aug-13] The option 1 in conceptual density functional theory analysis module (subfunction 16 of mainfunction 100) now is able to generate ORCA input files for producing N.wfn, N+1.wfn and N-1.wfn. User should select option -2 to switch the program to ORCA before selecting option 1.
    ?[2020-Aug-14] -nt and -uf arguments now can be added to command line of running Multiwfn to specify number of threads and index of user-defined function, respectively. -set can be used to specify position of settings.ini file. For example, Multiwfn phenol.wfn -nt 12 -set /sob/settings.ini. -silent argument can request Multiwfn run in silent mode. See Section 2.2 for more information.


    IMPROVEMENTS ON MANUAL

    ?[2019-Aug-8] Section 4.18.9 is added to the manual to illustrate how to transform transition density to natural orbitals and export them as .molden and .wfx files.
    ?[2019-Aug-24] The way of plotting sign(λ2)ρ colored IGM scatter map has been described at the end of Section 4.20.10.1.
    ?[2019-Sep-14] A new Section 4.4.1.2 is added to the manual to further illustrate skills of plotting plane map.
    ?[2019-Sep-17] Average local ionization energy (ALIE) colored molecular surface map now can be very easily drawn based on VMD script, see updated Section 4.12 of manual on how to realize this. This kind of map is quite useful for studying possible sites of electrophilic attack.
    ?[2019-Sep-28] Section 4.200.6.2 is added to the manual to show how to evaluate contribution of lone pair of an atom to various MOs by means of orbital localization analysis and orbital correspondence analysis.
    ?[2020-Feb-21] Section 4.12.13 is added to the manual to illustrate how to analyze local electron affinity.
    ?[2020-Feb-21] In the output of Mulliken, SCPA, Stout-Politzer and NAO orbital composition analysis, contribution of various angular moment of shells are directly printed.
    ?[2020-Mar-1] A document "Calculating information-theoretic quantities and some relevant quantities by Multiwfn" is added to "Resources" page of Multiwfn website. This document briefly illustrates how to use Multiwfn to calculate the very valuable information-theoretic quantities proposed by Prof. Shubin Liu in recent years.
    ?[2020-Mar-1] "Trick: Perform ESP analysis on molecular surface solely based on cube files" is added to end of Section 4.12.1.
    ?[2020-Apr-22] A document "How to cite Multiwfn.pdf" is provided in Multiwfn binary package since this version.
    ?[2020-Apr-23] Section 4.2.7 is added to the manual. This section illustrates how to use attractors determined by basin analysis module as initial guessing points for searching critical points by topology analysis module. This skill guarantees that all maxima of positive part and minima of negative part of a function with complicated distribution can be exactly located.


    BUG FIXED

    ?Fixed: For a molecule of very long chain, the main function 0 is unable to plot the system.
    ?Fixed: When plotting DOS for beta spin, the vertical dash line does not correspond to beta-HOMO.
    ?[2019-Aug-28] Fixed: Some functions are incompatible with output file of ORCA 4.2
    ?[2019-Sep-11] Fixed: For some large systems, the Hirshfeld-I charge is completely wrong or the calculation will crash.
    ?[2019-Sep-12] Fixed: Multiwfn crash during Hirshfeld surface analysis if atomic densities are evaluated based on atomic .wfn files.
    ?[2019-Sep-24] Fixed: The outputted new.gjf by simple energy decomposition analysis function (subfunction 5 main function 21) does not work for Linux version of Gaussian16
    ?[2019-Oct-24] Fixed: Output file of anharmonic analysis of Gaussian program for linear molecule cannot be loaded to plot vibrational spectrum by main function 11
    ?[2019-Nov-4] Fixed: Cannot normally invoke cubegen to plot electrostatic potential by main function 3.
    ?[2019-Nov-20] Fixed: The excited state dipole moments outputted by option 4 of subfunction 5 of main function 18 are wrong if the origin of the system is not placed at nuclear charge center.
    ?[2020-Feb-20] Fixed: Molden file containing certain kinds of transition metals generated by Grimme's xtb code cannot be properly loaded.
    ?[2020-May-28] Fixed: Unit conversion factor between eV and nm is marginally inaccurate.
    ?[2020-Jun-28] Fixed: The unsymmetrized transition density matrix (TDM) between two excited states generated by subfunction 9 of main function 18 is incorrect. This bug does not affect symmetrized TDM

    久久精品国产99久久香蕉