Then I obtain following data
Transition electric dipole moment between ground state (0) and excited states (
a.u.)
i j X Y Z Diff.(eV) Oscil.str
0 1 -0.0184478 0.0876744 -0.0753031 2.41780 0.00081
0 2 0.0064682 0.0153879 -0.0174119 2.44450 0.00003
0 3 0.0198596 0.0315486 -0.0073035 2.52350 0.00009
0 4 -0.0021030 0.0157768 0.0032594 2.55180 0.00002
0 5 0.9767020 5.4012090 -0.2903876 2.64460 1.95744
0 6 0.0054606 0.0264971 0.0191388 2.66090 0.00007
0 7 -0.1082712 -0.0673842 0.0021334 2.70910 0.00108
0 8 0.0057811 -0.0038004 -0.0019630 2.77590 0.00000
0 9 0.0376454 0.2034906 -0.0080345 2.82680 0.00297
0 10 0.0052998 -0.0318288 -0.1068360 2.86030 0.00087
0 11 -0.0478869 -0.0446300 -0.0779666 2.94400 0.00075
0 12 0.0948701 -0.0508343 -0.1396014 2.95570 0.00225
0 13 0.0037044 0.0017789 0.0021912 2.98590 0.00000
0 14 0.0334592 0.0437068 -0.0193586 3.07180 0.00026
0 15 -0.0542795 0.0433833 0.0345362 3.10290 0.00046
0 16 -0.0470189 0.1178708 0.0920791 3.12110 0.00188
0 17 -0.0044826 -0.0839705 0.0176850 3.13810 0.00057
0 18 -0.0185949 -0.4634157 0.1564067 3.17530 0.01864
0 19 -0.1436093 0.0093767 -0.0339999 3.23550 0.00173
0 20 -0.2572736 0.0309617 -0.6497620 3.34660 0.04012
As you can see, the 0-14 result 0.0334592 0.0437068 -0.0193586 doesn't differ from that printed by Gaussian (0.0332 0.0361 -0.0098) too much by absolute magnitude. The quantitative discrepancy mainly comes from that only configuration coefficients larger than 1E-4 are taken into account. If IOp(9/40=5) is used, I find the result will be 0.0345300 0.0367532 -0.0109116, which is notably more close to the Gaussian result and the difference can be fully ignored.
]]>Thanks in advance.
]]>Note that in order to use Multiwfn to calculate transition dipole moments between ground state and excited states, or dipole moments of excited states, IOp(9/40=4) should be used in Gaussian TDDFT input file, otherwise the result of Multiwfn will be inaccurate, this point has been clearly mentioned in Section 3.21.A.
]]>