Hi
I am actually following this thread. But I noticed something which is I think a bug. Actually, I do TDDFT/TDA excitation calculation with ORCA. Then by using the multiwfn I print the transition dipole moment(TDM) between triplet excited states into a file. Due to spin-forbidden symmetry, the TDM between the excited states and the ground state is expected to be zero. But there are non-zero values in the output of the multiwfn. Below I paste the file and input. Am I missing something? Thanks for your help in advance.
...
Multiwfn only calculates spatial part of the integral between the two states, therefore the integral is not always zero even if their spins are different. This consideration enables user to study contribution to the transition moment due to spatial part.
]]>Ground state dipole moment in X,Y,Z: -0.919265 0.000000 0.000000 a.u.
Transition dipole moment between ground state (0) and excited states (a.u.)<<<<<<<<<this part!!!
i j X Y Z Diff.(eV) Oscil.str
0 1 0.0000000 0.0000000 -0.0000000 3.04700 0.00000
0 2 1.6369533 -0.0000000 0.0000000 5.56300 0.36521
0 3 -0.0000000 0.0000000 0.2403447 7.54600 0.01068
0 4 -0.0000000 -0.7444997 0.0000000 8.25800 0.11214
0 5 -0.9693674 0.0000000 -0.0000000 9.55800 0.22004
0 6 -0.0000000 -0.0000000 -0.0000000 10.13500 0.00000
0 7 -0.0000000 0.2898024 -0.0000000 10.57600 0.02176
0 8 -0.0000000 -0.0000000 -0.0513721 11.73500 0.00076
0 9 -0.0000000 0.0000000 0.0000000 13.09400 0.00000
0 10 -0.2507843 -0.0000000 -0.0000000 13.13300 0.02024
Note: In below output the case of i=j corresponds to electronic contribution to dipole moment of excited state i
Transition dipole moment between excited states (a.u.):
i j X Y Z Diff.(eV) Oscil.str
1 1 -14.8153681 -0.0000000 0.0000000 0.00000 0.00000
1 2 -0.0000000 0.0000000 0.0000000 2.51600 0.00000
1 3 -0.0000000 0.1100916 0.0000000 4.49900 0.00134
1 4 0.0000000 -0.0000000 0.1342749 5.21100 0.00230
1 5 -0.0000000 0.0000000 0.0000000 6.51100 0.00000
1 6 -1.0553176 -0.0000000 -0.0000000 7.08800 0.19340
1 7 -0.0000000 0.0000000 0.3395162 7.52900 0.02126
1 8 -0.0000000 -0.0881545 0.0000000 8.68800 0.00165
1 9 -0.0516298 0.0000000 -0.0000000 10.04700 0.00066
1 10 -0.0000000 -0.0000000 -0.0000000 10.08600 0.00000
2 2 -15.0454369 0.0000000 0.0000000 0.00000 0.00000
2 3 0.0000000 -0.0000000 0.2009163 1.98300 0.00196
2 4 -0.0000000 -0.0165595 0.0000000 2.69500 0.00002
2 5 -0.0232897 -0.0000000 0.0000000 3.99500 0.00005
2 6 -0.0000000 0.0000000 -0.0000000 4.57200 0.00000
2 7 -0.0000000 0.0073588 -0.0000000 5.01300 0.00001
2 8 0.0000000 -0.0000000 0.1386768 6.17200 0.00291
2 9 0.0000000 -0.0000000 -0.0000000 7.53100 0.00000
2 10 -0.0154861 0.0000000 -0.0000000 7.57000 0.00004
3 3 -14.3275000 -0.0000000 0.0000000 0.00000 0.00000
3 4 -0.0000000 0.0000000 0.0000000 0.71200 0.00000
3 5 0.0000000 -0.0000000 0.0031039 2.01200 0.00000
3 6 -0.0000000 -0.2553353 0.0000000 2.58900 0.00414
3 7 0.0000000 -0.0000000 -0.0000000 3.03000 0.00000
3 8 -0.1311443 0.0000000 -0.0000000 4.18900 0.00177
3 9 0.0000000 0.0026328 0.0000000 5.54800 0.00000
3 10 0.0000000 -0.0000000 0.1292816 5.58700 0.00229
4 4 -13.0080277 -0.0000000 -0.0000000 0.00000 0.00000
4 5 0.0000000 2.4825438 -0.0000000 1.30000 0.19629
4 6 0.0000000 -0.0000000 -0.0026019 1.87700 0.00000
4 7 -0.7238323 0.0000000 -0.0000000 2.31800 0.02975
4 8 -0.0000000 0.0000000 0.0000000 3.47700 0.00000
4 9 0.0000000 0.0000000 -0.0024952 4.83600 0.00000
4 10 -0.0000000 -0.0215968 0.0000000 4.87500 0.00006
5 5 -12.8755932 0.0000000 0.0000000 0.00000 0.00000
5 6 -0.0000000 -0.0000000 0.0000000 0.57700 0.00000
5 7 0.0000000 -0.2790778 0.0000000 1.01800 0.00194
5 8 -0.0000000 -0.0000000 0.0115256 2.17700 0.00001
5 9 0.0000000 -0.0000000 -0.0000000 3.53600 0.00000
5 10 -0.0981934 0.0000000 -0.0000000 3.57500 0.00084
6 6 -16.4573582 0.0000000 0.0000000 0.00000 0.00000
6 7 -0.0000000 -0.0000000 -0.0212998 0.44100 0.00000
6 8 0.0000000 0.0223062 0.0000000 1.60000 0.00002
6 9 -0.1906848 -0.0000000 -0.0000000 2.95900 0.00264
6 10 -0.0000000 0.0000000 0.0000000 2.99800 0.00000
7 7 -14.3511138 -0.0000000 0.0000000 0.00000 0.00000
7 8 0.0000000 -0.0000000 -0.0000000 1.15900 0.00000
7 9 0.0000000 0.0000000 0.0077506 2.51800 0.00000
7 10 -0.0000000 -0.0171188 -0.0000000 2.55700 0.00002
8 8 -13.0647418 -0.0000000 0.0000000 0.00000 0.00000
8 9 -0.0000000 -2.5116377 0.0000000 1.35900 0.21003
8 10 0.0000000 -0.0000000 0.2052468 1.39800 0.00144
9 9 -12.9148777 0.0000000 0.0000000 0.00000 0.00000
9 10 -0.0000000 0.0000000 -0.0000000 0.03900 0.00000
10 10 -12.5088649 -0.0000000 -0.0000000 0.00000 0.00000
!B3LYP def2-SVP nopop printbasis
%pal
nprocs 32
end
%tddft
nroots 10
triplets true
dosoc false
tprint 1E-8
printlevel 4
end
* XYZFILE 0 1 CH2O.xyz
]]>Halil
]]>Please make sure that you are using the latest version of Multiwfn on the Multiwfn official website. Multiwfn updates very frequently. I remembered that several month ago I have fixed the problem in reading ORCA 4.2 output file.
Best regards,
Tian
]]>Probably the keywords you used are not reasonably. For example, the input file should look like
!b3lyp def2-SVP nopop
%tddft
nroots=5
triplets true
tprint 1E-8
end
* xyz 0 1
C 0.000000 0.000000 -0.528864
H 0.000000 0.937752 -1.123775
O 0.000000 0.000000 0.677592
H 0.000000 -0.937752 -1.123775
*
Then you can use Multiwfn to calculate transition dipole moments between singlet excited states and those between triplet excited states, as illustrated here:
out.txt
Halil
]]>In principle this is possible, and it is not difficult if you know how to write program/script. AFAIK, ORCA is unable to directly do this, and there is also no existing code in Multiwfn that can do this.
To realize this purpose, you need below two information
(1) Mixing coefficients of singlet and triplet excited states in the SOC excited states. This can be obtained by SOC-TDDFT task of ORCA.
(2) Transition dipole moment between singlet excited states and that between triplet excited states. This can be obtained by subfunction 5 of main function 18 of Multiwfn, see Section 3.21.5 of Multiwfn manual for on how to obtain them.
Then by simply combining them together, the transition dipole moment between SOC excited states can be obtained. The code used to do this should not exceed 100 lines.
Best regards,
Tian
]]>Halil
]]>